English Wikipedia - The Free Encycl...
Download this dictionary
Lorentz covariance
In physics, Lorentz symmetry, named for Hendrik Lorentz, is "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space". Lorentz covariance, a related concept, is a key property of spacetime following from the special theory of relativity. Lorentz covariance has two distinct, but closely related meanings:
  1. physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectorsfour-tensors, and spinors. In particular, a scalar (e.g., the space-time interval) remains the same under Lorentz transformations and is said to be a "Lorentz invariant" (i.e., they transform under the trivial representation).
  2. An equation is said to be Lorentz covariant if it can be written in terms of Lorentz covariant quantities (confusingly, some use the term "invariant" here). The key property of such equations is that if they hold in one inertial frame, then they hold in any inertial frame; this follows from the result that if all the components of a tensor vanish in one frame, they vanish in every frame. This condition is a requirement according to the principle of relativity, i.e., all non-gravitational laws must make the same predictions for identical experiments taking place at the same spacetime event in two different inertial frames of reference.

See more at Wikipedia.org...


© This article uses material from Wikipedia® and is licensed under the GNU Free Documentation License and under the Creative Commons Attribution-ShareAlike License